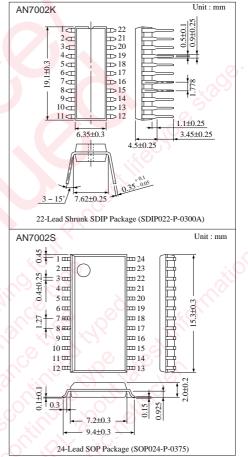
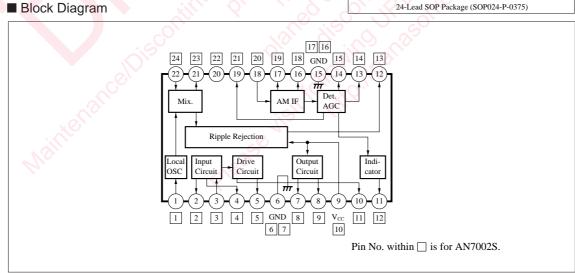
AN7002K, AN7002S


Single Chip ICs for AM Radio


Overview

The AN7002K and the AN7002S are the single chip ICs incorporating AM tuner block to power amp. block for 3V radio and are suitable for low-end AM radio.

Features

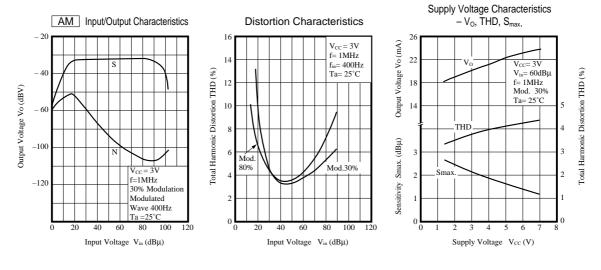
- Single chip ICs incorporating AM tuner block to power amp. block
- Low power consumption : 17mA (at no signal)
- Built-in tuning indicator circuit
- Adjustment-free IF

Panasonic

Absolute	Maximum	Ratings	(Ta=25°C)	

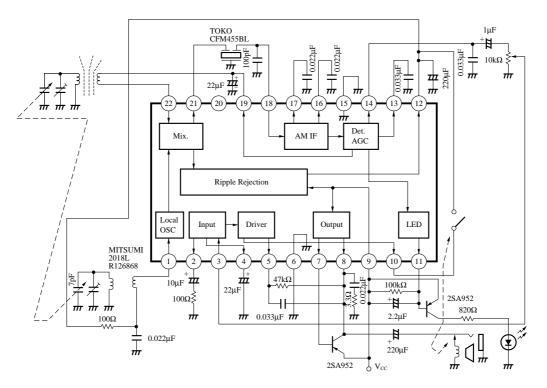
Paramo	eter	Symbol	Rating	Unit
Complex Valta as	AN7002K	V	6	- V
Supply Voltage	AN7002S	V _{CC}	4.5	v
Supply Current		I _{CC}	300	mA
Denne Dingingting	AN7002K	P _D	1980	
Power Dissipation	AN7002S		520	mW
Operating Ambient Temperature		T _{opr}	-20 ~ + 75	°C
С	AN7002K	T	-55 ~ + 150	
Storage Temperature	AN7002S	T _{stg}	-55 ~ + 125	°C

■ Recommended Operating Range (Ta=25°C)


Parameter		Symbol	Range	
Operating Supply Voltage	AN7002K	V _{CC} -	1.8V ~ 6V	
Range	AN7002S		1.8V ~ 4.5V	

Electrical Characteristics

 $(V_{CC} = 3V, [AM Section] R_L = 5k\Omega, f = 1MHz, Mod. = 30\%, f_M = 400Hz [Power Section] R_L = 8\Omega, f = 1kHz, Ta = 25^{\circ}C)$


Parameter	Symbol	Condition	min.	typ.	max.	Unit
Total Circuit Current	I _{tot}	AM $V_{in} = -20 dB\mu$, Power $V_{in} = 0mV$	9	17	25	mA
AM Section (Power Section Rg=10k	Ω)					
Detection Output Voltage	Vo	$V_{in} = 60 dB \mu$	16	24	32	mVrms
Sensitivity	Smax.	$V_0 = 5mVrms$	-4	4.5	13	dBµ
Indicator Sensitivity	V _{IND}	Pin11 = less than 1VV	7	17	27	dBµ
Power Section (AM Section V _{in} = -2	20dBµ)					
Voltage Gain	Gv	$V_0 = 0.28 mVrms$	41	44	47	dB
Output Noise Voltage	V _{NO}	$R_g = 10k\Omega$, DIN/AUDIO		0.3	0.6	mVrms
Total Harmonic Distortion THD V _O = 0.28mVrms			2.5	5	%	
Maximum Output Po THI		THD = 10%	100	120		mW

Characteristics Curve

Panasonic

■ Application Circuit (AN7002K)

Pin	Descriptions
-----	--------------

Pin No. within \Box is for AN7002S

Pin No.		Pin Name	Typ. Waveform	Description	Equivalent Circuit	
AN7002K	AN7002S	Thirtvanic Typ. waveloini		Description		
1	1	Local OSC		AMOSC pin Oscillation circuit is made up with differential amp.	V _{cc} 1 1	
9	10	V _{CC}	DC 3V	Supply pin		
3	3	AF Input	\sim	Differential amp. base input	33 3 3 3 3 3 3 3 3 3 3 3 3	
4	4	Ripple Rejection		Ripple rejection pin	$13 (12)$ To power amp. $20k\Omega$ $4 4$	

AN7002K, AN7002S

ICs for FM/AM Tuner

	Pin Descriptions (Cont.) Pin No. within [] is for AN70 Pin No.					
	AN7002S	Pin Name	Typ. Waveform	Description	Equivalent Circuit	
5	5	Phase Compensation		Phase compensation pin Connect phase compensation C, R between power output pin and this pin.	5 5	
6	6 7	GND	DC 0V	GND pin		
7	8	PNP Power Base		PNP power transistor base connection pin		
8	9	Power Output	\sim	Power output pin		
2	2	Negative Feedback	—	Power amp. negative feedback pin	$\begin{array}{c c} \hline & & & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline \end{array} $	
10	11	Current Switching		Current switching pin Connect this pin with V_{CC} and increase supply current quantity.		
11	12	Indicator		Indicator pin LED drive becomes open collector output used AGC voltage. Drive capacitance is 2mA. So LED can't be driven directly.		
12	13	Ripple Rejection		Ripple rejection pin Make up of π type filter at C, R and increase ripple rejection efficiency.	Other block power supply line 13 100Ω 910 13 100Ω 910 100 910 100	
13	14	Detection	\sim	Detection pin Input 455kHz IF signal to two Tr in reverse phase, peak detect all-rectified waveform through constant-current supply and C, R charge and discharge.	$\begin{array}{c} \downarrow \\ \downarrow $	
14	15	Detection Output	\sim	Detection output pin This pin is PNP emitter ground amp. output. Output impedance is $2.2k\Omega$.	-(4)15 \$2.2kΩ	

Panasonic

■ Pin Descriptions (Cont.) Pin No. within □ is for AN7002						
Pin No. AN7002K AN7002S		Pin Name	Typ. Waveform	Description	Equivalent Circuit	
15	16 17	GND	DC 0V	GND pin		
16	18	IF By-pass	455kHz IF Signal	IF by-pass capacitor connection pin	1719 1618	
17	19	IF By-pass	455kHz IF Signal	IF by-pass capacitor connection pin		
18	20	IF Input	455kHz IF Signal	IF input pin Differential amp. base input	<u>20</u> π	
19	21	AGC		AGC pin Connect capacitor		
22	24	RF Input	AM Signal	RF input pin Differential amp. base input		
21	23	MIX Output	455kHz IF Signal	MIX output pin Connect ceramic filter		
20	22	NC		NC Pin		

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.